Chatbots
Empire Chain provides several types of chatbots that can be easily integrated into your applications.
Simple Chatbot
The basic chatbot implementation using Streamlit:
from empire_chain.streamlit import Chatbot
from empire_chain.llms.llms import OpenAILLM
# Create and run chatbot
chatbot = Chatbot(
title="Empire Chatbot",
llm=OpenAILLM("gpt-4o-mini")
)
chatbot.chat()
Vision Chatbot
Chat with images using multimodal models:
from empire_chain.streamlit import VisionChatbot
# Create and run vision chatbot
chatbot = VisionChatbot(title="Empire Vision Chatbot")
chatbot.chat()
PDF Chatbot
Chat with PDF documents using RAG:
from empire_chain.streamlit import PDFChatbot
from empire_chain.llms.llms import OpenAILLM
from empire_chain.vector_stores import QdrantVectorStore
from empire_chain.embeddings import OpenAIEmbeddings
# Create and run PDF chatbot
pdf_chatbot = PDFChatbot(
title="PDF Chatbot",
llm=OpenAILLM("gpt-4o-mini"),
vector_store=QdrantVectorStore(":memory:"),
embeddings=OpenAIEmbeddings("text-embedding-3-small")
)
pdf_chatbot.chat()
Features
- Simple Chatbot: Basic text-based conversation
- Vision Chatbot: Image understanding and discussion
- PDF Chatbot: Document-based conversation using RAG
- Customizable UI: Built with Streamlit for easy deployment
- Multiple LLM Support: OpenAI, Anthropic, Groq
Running the Chatbots
-
Install dependencies:
-
Run the chatbot:
For more examples and advanced usage, check out the chatbot cookbooks in the repository.